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Iterative combinatorial auctions (ICAs):

• Combinatorial: bid on bundles of items 

• Iterative: multiple bidding rounds 

Spectrum auctions: auctioning the right to use EM spectrum (radio, TV, cellular data…)

• Complex: dozens of bidders, hundreds of products, weeks of bidding

• High stakes: $1B+ of revenue; strategic bidding is potentially lucrative

How should a bidder bid?

How should an auction designer set the rules?
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Analyzing Iterative Combinatorial Auctions
Many existing methods aren’t suitable:

• Pen-and-paper analysis: requires restrictive assumptions
(e.g., Riedel and Wolfstetter, 2006: assumed one product and perfect information)

• Traditional equilibrium solvers: infeasible
(enormous extensive-form representations)

• Field testing: too infrequent/high-stakes to learn from data
(spectrum auctions: every few years, with constantly changing rules)
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Can off-the-shelf multi-agent reinforcement learning (MARL) algorithms help?
(e.g., algorithms developed for training poker agents?)

Unlikely to make “superhuman” autonomous bidders!

Still, valuable for:

• providing examples of strong bidding behavior

• building a strategic playbook

• evaluating likely costs and benefits of candidate rule changes
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Using MARL algorithms effectively takes care: need to

• Balance real-world fidelity with tractability in the auction model

• Navigate common pitfalls of MARL algorithms

• Validate and interpret learned policies



This Talk
Using MARL algorithms effectively takes care: need to

• Balance real-world fidelity with tractability in the auction model

• Navigate common pitfalls of MARL algorithms

• Validate and interpret learned policies

When done right, can be a powerful tool!

• Case study: for one potential clock auction rule change,

   non-trivial behavior changes lead to substantially different auction outcomes
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Control number of infostates 
without losing key strategic elements:

• Restrict number of actions

• Discretize continuous action spaces

• Limit auction length

• Avoid infinite-length histories

Some features are ideal for MARL:

• Asymmetric bidders, case-based rules, imperfect information

Modeling an Auction
…
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Finding Equilibria
Two key aspects of MARL algorithms:

• Policies: represent with a lookup table or function approximation
(lookup tables more stable; function approximation necessary for scale)

• Exploration: single path or counterfactual actions in each iteration
(exploring one path scales further, but can struggle to train effectively)

Other considerations:

• Break indifferences between identical rewards

• Consider restricting policies to pure strategies

• Find multiple equilibria by running with multiple seeds
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(possible gain in utility by best-responding, holding opponents fixed)
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Validating & Interpreting Policies
Test for convergence by computing NashConv: sum of each player’s regret
(possible gain in utility by best-responding, holding opponents fixed)

• Smaller games: compute exactly with depth-first search

• Larger games: lower-bound with single-agent RL

Auction statistics alone can give helpful insight (revenue, welfare, length, …)

• With multiple equilibria, report ranges, not averages



Case Study: Clock Auctions
Auctioneer has:

• A set of regions 

• A number of (identical) items to sell in each region

Basic clock auction: set initial prices for each region; in each round,

• Every bidder makes a bid (vector of quantities for each region)

• If demand ≤ supply in every region, end auction

• Else, reveal total demands to bidders 
   and raise prices on over-demanded regions
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Case Study: Bid Processing
Undersell rule: don’t allow demand < supply

Two natural tiebreaking solutions:

• Drop-by-bidder: process each bid in a random order

• Drop-by-license: process each unit of demand in a random order

Round T
 Processed Bids

Round T+1
Submitted Bids

Round T+1
Processed Bids

25% 25%50%
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Case Study: Experiments
Auction: 2 bidders; 2 regions with {4, 1} licenses

• Value functions drawn from MRVM model [Weiss et al., 2017]

• 5 games with 500-700 information states

1. Monte-Carlo Counterfactual Regret Minimization (MCCFR)

• Tabular policy; explores counterfactual actions

• Easy to use: required little tuning

2. Proximal Policy Optimization (PPO)

• Function approximation; single path

• Needs tuning: few hyperparameter settings worked well



Case Study: Results
Drop-by-license: bidders completely avoid tiebreaks

• Leads to longer auctions with higher revenue and lower welfare
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Conclusion
Multi-agent RL: a potentially powerful tool for economic analysis

• Model, algorithm, and validation require care

• When done right, can give empirical solutions to problems 
   out of reach for traditional methods

Thank you! 

ArXiv

gregdeon@cs.ubc.ca

gregdeon.com

github.com/newmanne/open_spiel
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