Testing Axioms Against Human Reward Divisions in Cooperative Games

AAMAS 2020

Greg d'Eon¹, Kate Larson²

¹University of British Columbia; ²University of Waterloo

♥ @gregdeon_

gregdeon.com

gregdeon@cs.ubc.ca

Algorithms with Human Values

We are building algorithms that make **difficult moral decisions**.

Kidney exchanges

[Freedman et al., 2018]

Food rescue services

[Lee et al., 2019]

Algorithms with Human Values

Two approaches for designing values into algorithms

The axiomatic approach:

- Fix a set of axioms and derive the outcomes that satisfy them
- Conceptually simple with provable guarantees, but hard to capture social norms

The **empirical** approach:

- Elicit stakeholders' opinions and encode them into a model's behaviour
- Driven by data, but loses guarantees

Cooperative Game Theory

This tension appears in cooperative game theory:

▶ Transferrable utility game: set of players, and rewards for every coalition

Players	Reward
(nobody)	0
Alice	30
Bob	20
Charlie	10
Alice, Bob	50
Alice, Charlie	40
Bob, Charlie	30
Alice, Bob, Charlie	60

Major question: if everyone works together, how should they split the reward?

Most famous solution concept: Shapley value [Shapley 1953]

Major question: if everyone works together, how should they split the reward?

Most famous solution concept: Shapley value [Shapley 1953]

Unique reward division Sh satisfying 4 fairness axioms:

1. Efficiency: all of the group's reward is allocated

Major question: if everyone works together, how should they split the reward?

Most famous solution concept: Shapley value [Shapley 1953]

- 1. Efficiency: all of the group's reward is allocated
- 2. **Symmetry**: players with *same marginal contributions* to all coalitions get same reward

Major question: if everyone works together, how should they split the reward?

Most famous solution concept: Shapley value [Shapley 1953]

- 1. Efficiency: all of the group's reward is allocated
- 2. **Symmetry**: players with *same marginal contributions* to all coalitions get same reward
- 3. Null Players: players with no marginal contribution to any coalition get no reward

Major question: if everyone works together, how should they split the reward?

Most famous solution concept: Shapley value [Shapley 1953]

- 1. Efficiency: all of the group's reward is allocated
- 2. **Symmetry**: players with *same marginal contributions* to all coalitions get same reward
- 3. Null Players: players with no marginal contribution to any coalition get no reward
- 4. Additivity: for games f and g with the same players, Sh(f + g) = Sh(f) + Sh(g)

Alternatives and Empirical Studies

Do these axioms capture fairness?

Alternatives weaken the null player axiom:

- Solidarity value [Nowak and Radzik 1994]
- Egalitarian Shapley values [Joosten 1996, Casajus and Huettner 2013]
- Procedural values [Malawski 2013, Radzik and Driessen 2013]

Experiments on impartial decisions about reward divisions [De Clippel and Rozen, 2013]

- Rewards are convex combinations of equal split and Shapley value
- Satisfy efficiency, symmetry, and additivity, but not null player

Overview

In this talk:

- Use crowdsourced experiments to study impartial reward divisions
- Find that people often pick rewards unrelated to the Shapley value
- Show that people violate additivity and null player axioms, but identify weaker axioms that align with their decisions

Two crowdsourced MTurk experiments: divide rewards in fictional scenarios

• After filtering low-effort responses, n = 74 and 75

Players	Gold Pieces
(nobody)	0
Alice	30
Bob	20
Charlie	10
Alice, Bob	50
Alice, Charlie	40
Bob, Charlie	30
Alice, Bob, Charlie	60

All three of them go on the quest together and earn 60 gold pieces as a group.

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	Pair
(nobody)		
Alice		
Bob		
Charlie		
Alice, Bob		
Alice, Charlie		
Bob, Charlie		
Alice, Bob, Charlie		

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	Pair
(nobody)	0	
Alice	40	
Bob	40	
Charlie	10	
Alice, Bob	60	
Alice, Charlie	60	
Bob, Charlie	60	
Alice, Bob, Charlie	60	

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	PAIR
(nobody)	0	
Alice	40	
Bob	40	
Charlie	10	
Alice, Bob	60	
Alice, Charlie	60	
Bob, Charlie	60	
Alice, Bob, Charlie	60	

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	Pair
(nobody)	0	
Alice	40	
Bob	40	
Charlie	10	
Alice, Bob	60	
Alice, Charlie	60	
Bob, Charlie	60	
Alice, Bob, Charlie	60	

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	PAIR
(nobody)	0	0
Alice	40	0
Bob	40	0
Charlie	10	0
Alice, Bob	60	45
Alice, Charlie	60	15
Bob, Charlie	60	15
Alice, Bob, Charlie	60	60

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	PAIR
(nobody)	0	0
Alice	40	0
Bob	40	0
Charlie	10	0
Alice, Bob	60	45
Alice, Charlie	60	15
Bob, Charlie	60	15
Alice, Bob, Charlie	60	60

Experiment 1: design games to emphasize 1- or 2-player groups

Players	Solo	PAIR
(nobody)	0	0
Alice	40	0
Bob	40	0
Charlie	10	0
Alice, Bob	60	45
Alice, Charlie	60	15
Bob, Charlie	60	15
Alice, Bob, Charlie	60	60

Experiment 1: Results

Shapley value = [25, 25, 10]:

Experiment 1: Results

Shapley value = [30, 15, 15]:

Experiment 2: investigate impacts of 1-player groups

▶ Revisit example: Shapley value of [25, 25, 10]

Players	Rewards
(nobody)	0
Alice	25
Bob	10
Charlie	10
Alice, Bob	60
Alice, Charlie	30
Bob, Charlie	45
Alice, Bob, Charlie	60

Experiment 2: investigate impacts of 1-player groups

▶ Revisit example: Shapley value of [25, 25, 10]

Players	Rewards
(nobody)	0
Alice	25
Bob	10
Charlie	10
Alice, Bob	60
Alice, Charlie	30
Bob, Charlie	45
Alice, Bob, Charlie	60

Experiment 2: investigate impacts of 1-player groups

▶ Revisit example: Shapley value of [25, 25, 10]

Players	Rewards
(nobody)	0
Alice	25
Bob	10
Charlie	10
Alice, Bob	60
Alice, Charlie	30
Bob, Charlie	45
Alice, Bob, Charlie	60

Experiment 2: Results

Shapley value = [25, 25, 10]:

Experiment 2: Results

Shapley value = [30, 15, 15]:

Experiment 2: Results

Shapley value = [40, 20, 0], with null player 3:

Testing Axioms: Symmetry

Which axioms did people violate?

Efficiency: required by experiment interface

Symmetry: must give equal rewards to symmetric players

- Experiment 1 games had symmetric players
- ▶ 455/525 (86.7%) reward divisions obeyed symmetry
- No significant differences

Symmetry: 🗸

Testing Axioms: Null Player

Null player axiom: must give no reward to null players

- 4 games in Experiment 2 with null players
- Best case: 14/74 participants gave 0 reward

Null player: X

Consistent with De Clippel and Rozen [2013]

Additivity: test relationships between games

> Assuming efficiency and symmetry, must give same rewards in some games

Players	f	g	f-g
(nobody)			
Alice			
Bob			
Charlie			
Alice, Bob			
Alice, Charlie			
Bob, Charlie			
Alice, Bob, Charlie			

Additivity: test relationships between games

Assuming efficiency and symmetry, must give same rewards in some games

Players	f	g	f — g
(nobody)	0		
Alice	25		
Bob	10		
Charlie	10		
Alice, Bob	60		
Alice, Charlie	30		
Bob, Charlie	45		
Alice, Bob, Charlie	60		

Additivity: test relationships between games

Assuming efficiency and symmetry, must give same rewards in some games

Players	f	g	f — g
(nobody)	0	0	
Alice	25	20	
Bob	10	5	
Charlie	10	5	
Alice, Bob	60	60	
Alice, Charlie	30	30	
Bob, Charlie	45	45	
Alice, Bob, Charlie	60	60	

Additivity: test relationships between games

Assuming efficiency and symmetry, must give same rewards in some games

Players	f	g	f-g
(nobody)	0	0	
Alice	25	20	
Bob	10	5	
Charlie	10	5	
Alice, Bob	60	60	
Alice, Charlie	30	30	
Bob, Charlie	45	45	
Alice, Bob, Charlie	60	60	

Additivity: test relationships between games

> Assuming efficiency and symmetry, must give same rewards in some games

Players	f	g	f-g
(nobody)	0	0	0
Alice	25	20	5
Bob	10	5	5
Charlie	10	5	5
Alice, Bob	60	60	0
Alice, Charlie	30	30	0
Bob, Charlie	45	45	0
Alice, Bob, Charlie	60	60	0

Found that people gave inconsistent rewards to players $1 \mbox{ and } 3$

- Significant for games with Sh = [25, 25, 10] (p < 0.01)
- Marginally significant for games with Sh = [30, 15, 15] (p = 0.07 and p = 0.08)

Additivity: 🗡

Conflicts with De Clippel and Rozen [2013]

Alternative Axioms

Efficiency and symmetry put little structure on space of outcomes

Weaker axioms that align with reward divisions?

Local monotonicity: if player i never has a smaller marginal contribution than player j, then player i should not have a smaller reward

Closer match to people's opinions:

- Experiment 1: 734/825 (89%)
- Experiment 2: 1203/1258 (95%)

Summary & Beyond Cooperative Games

Recap:

- People pick reward divisions that are often unrelated to Shapley value
- Reward divisions break null player and additivity axioms, but satisfy weaker axioms

These methods apply beyond cooperative game theory

- > Fair division and voting rules: rich bodies of axiomatic literature
- Provides tools to direct and analyze experiments

Unsatisfying if axioms don't pin down a single outcome?

- Inevitable, since people don't agree on one definition of fairness
- "Algorithm-in-the-loop" systems: outcomes are starting point for human decisions